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Sequence-Aware Query Recommendation Using Deep Learning
Eugenie Y. Lai | Advised by Rachel Pottinger

University of British Columbia, Data Management and Mining Lab

BACKGROUND & MOTIVATION

Objective: help users write SQL queries to access databases
e Database management systems understand SQL queries

e SQL queries are questions 1n Structured Query Language
e Challenge: users lack database-related expertise
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Figure 1: User interaction with databases.

PROBLEM & PRELIMINARIES

Model query recommendation as a query prediction task
Intuition: predict the user’s next query by learning from
the queries posted by past users

SELECT |j.target, CAST (j.estimate /AS VARCHAR) AS estimate

FROM Jobs j. Status s,
(SELECT DISTINCT |target, queue| FROMiServers r
WHERE |r.queug NOT IN (SELECT MIN(fqueud)

FROMIServers

GROUP BY |target])

WHERE |.outputtype] LIKE '%QUERY%'

Figure 2: Sample SQL query Q. _is table, [__lis attribute

Use sequence-to-sequence (seg2seq) models
e Advantages: less human intervention, etc.
e NLP application: chatbot

e Recurrent neural networks (RNNs)

(Q;4+1: SELECT  objld FROM SpecPhoto <EQS>
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Figure 3: An RNN seq2seq model that takes query ();1n a session
_and predicts the next query Qi1

CONTRIBUTIONS

Leverage whole queries and query sequences

e Decfiine a new approach to guide DBMS users’ next-step
query formulation

e Adapt a broad set of deep learning models to our problem

e Empirically evaluate our approach using two real-world
datasets and compare to an existing approach

METHOD OVERVIEW

First, train seq2seq models
® sequence-aware: with query prediction task using query

subsequences (@i, Qi+1)
e sequence-blind (1n comparison) with query reconstruction

task using (Q;, Q; )

Then, recommend query fragments using the trained model
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Figure 4: Query fragment prediction.

EXPERIMENTAL SETUP

Evaluate the efficacy of the combination of deep learning
models and query subsequences 1in query recommendation
e Task: Use test set, given Q;, predict fragments in Q);+1
e Methods compared

o baselinel: the most popular queries

o0 QueRIE framework: existing method

O seg-aware vs. seq-blind deep learning models

® Metric: F-measure (the higher, the better)

RESULTS & DISCUSSION

Fragment prediction result shows that seq-aware RNN

e outperforms other approaches by far in table & function
e slightly outperforms others in attribute prediction

The seqg-blind RNN performs best in literal prediction

® may suggest weak sequential patterns in changes in literal
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Figure 5: k 1s the number of model-predicted queries. Shadow 1s

the 95% confidence interval.

CONCLUSION & FUTURE WORK

Deep learning + query sequences 1s effective
Next steps: strengthen the evaluation

e Conduct a user study

e Compare to more existing methods

e Evaluate response time

e Evaluate the semantic distance of query fragments

\Contact: https://eugenielal.github.10/
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