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ABSTRACT
Users interact with databases management systems by writ-
ing sequences of queries. Those sequences encode impor-
tant information. Current SQL query recommendation ap-
proaches do not take that sequence into consideration. Our
work presents a novel sequence-aware approach to query
recommendation. We use deep learning prediction mod-
els trained on query sequences extracted from large-scale
query workloads to build our approach. We present users
with contextual (query fragments) and structural (query
templates) information that can aid them in formulating
their next query. We thoroughly analyze query sequences
in two real-world query workloads, the Sloan Digital Sky
Survey (SDSS) and the SQLShare workload. Empirical re-
sults show that the sequence-aware, deep-learning approach
outperforms methods that do not use sequence information.
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1. INTRODUCTION
Database management systems (DBMSs) provide essen-

tial infrastructure for users to access and interact with high
volumes of data. End users often interact with such database
applications through SQL query sessions: a sequence of
queries posted by a user to achieve their intent. Hence both
field-specific and database-related expertise are required since
users need to understand the database schema and SQL syn-
tax to pose meaningful questions.

Recommending information about query statements is one
of the ways to help users formulate SQL queries. There are
many different approaches. The QueRIE framework [13, 1]
uses collaborative filtering and recommends historical queries
from workloads. SnipSuggest [22, 21] models each query as

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

a vertex in a directed acyclic graph (DAG) and autocom-
pletes an input query with query fragments (e.g., tables, at-
tributes) at an interactive speed based on probability scores.
SQLSugg [14] generates queryable templates, i.e., undirected
graphs with attributes as vertices.

However, these approaches have two common limitations.
The first common limitation is that the existing approaches
consider queries individually and ignore query sequences.
Since each session is a snapshot of a user’s knowledge explo-
ration [6, 13], the sequential changes in the query statement
are a sequence of Q&A’s that reveals users’ thought pro-
cess. Hence query sequences and the sequential changes in
query sessions can contain valuable information in revealing
user intent and making recommendations. To illustrate, we
use an example from the SQLShare [19] workload, collected
from a database-as-a-service platform, the SQLShare, where
human users upload their data and write queries to interact.

Example 1. Changes in queries in a user session tell a
story. Figure 1 shows a session from the SQLShare workload
with queries over a database about genomics experiments.
The user starts by counting the number of unique experi-
ment types (Q1), then explores the gene and type used in
each experiment (Q2), and ends the sequence by asking the
number of genes used in each type of experiments, where the
gene count is greater than a threshold (Q3). Those three
queries represent a sequential exploratory pattern. 2

Instead of using natural sequences, the existing approaches
rely on a single, human-selected metric to compute query rel-
evance and make either whole-query or query fragment rec-
ommendations. Recommending whole queries is challenging
as the model-generated queries are likely complex and con-
tain syntax errors. To solve these problems, the QueRIE
framework turns queries into vectors and finds equivalent
raw queries in the workload using cosine similarity. SQL-
Sugg measures attribute importance using the number of
distinct values. Then it maps attributes to SQL keywords
based on attribute importance and generate ASPJ queries
clause-by-clause. Instead of whole queries, SnipSuggest rec-
ommends tables, attributes, functions, and conditions as the
user types a query. It assigns a probability score to the
edges between query vertices based on the queries’ overall
popularity in the workload. However, none of the existing
approaches consider queries at the session level.

The second common limitation of existing query recom-
mendation systems is that the existing approaches rely on
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Q1: SELECT COUNT(DISTINCT type) FROM Experiment

Q2: SELECT gene, type FROM Experiment ORDER BY type

Q3: SELECT type, COUNT(gene) FROM Experiment
GROUP BY type HAVING COUNT(gene) > 1

Figure 1: A sequence of queries in the SQLShare workload.

manually selected features to represent query statements.
Such human intervention leads to inevitable information loss
when representing a query’s semantic meaning and user in-
tent. The QueRIE framework encodes queries as vectors,
where each dimension is either a table or an attribute. Snip-
Suggest models each query as a set of tables, attributes,
functions, and conditions. SQLSugg uses tables and at-
tributes to generate and rank queryable templates. Since
queries can have distinct meanings even if they have simi-
lar selected features and vice versa, recommendations based
on such representations become arbitrary. These query rep-
resentations are also oblivious to relationships between the
words in queries. We use an example from the Sloan Digi-
tal Sky Survey (SDSS) [34, 35] workload, collected from the
SDSS database that stores images, spectra, and catalog data
for more than three million astronomical objects.

Example 2. Figure 2 shows queries Q4 and Q5 from two
different sessions in SDSS, and the query Q in the current
user session. The QuerRIE framework compares queries
based on fragments such as tables name, and therefore finds
Q more similar to Q4 rather than Q5 as the same set of ta-
bles appear in Q and Q4. However, considering the structure
of the queries, Q is more similar to Q5. They only differ in
a pair of tables, SpecObj and SpecPhoto, which means Q5’s
session perhaps can be more effective for query recommen-
dations for the current user compared to Q4’s session. 2

Example 2 shows that using manually picked features,
such as table name, for comparing queries can result in
second-rate recommendations. In this example, we also need
to compare queries using their structural properties to be
able to give a preferred recommendation. Selecting the right
set of features for query recommendation is difficult. The ex-
ample shows that it is not trivial which features summarize
the syntactic properties of queries. In general, the choice
of query features depends on the application and the type
of queries in the workload. As such, this calls for solutions
with automatic feature selection that can adapt to different
workloads and queries.

In this work, we aim to address these concerns by mod-
elling the query recommendation task as a natural thought
process of the end-users. To do that, we use whole query
statements and query session sequences in SQL query work-
loads, a collective knowledge exploration history of past
users in the form of query sessions. We seek to give users
contextual and structural information about their next-step
queries. Specifically, given a query, our approach predicts
two things of the next query: query fragments and query
templates. Query fragments are the database-dependent
components, e.g., tables and attributes, while query tem-
plates are a composite of SQL keywords (Figure 4).

We leverage the sequential feature in knowledge explo-
ration using deep learning prediction models. Neural net-
works obviate the need for human intervention such as fea-
ture selection since they have the capacity to hold and learn

Q4: SELECT DISTINCT obj.specclass, obj.z
FROM SpecObj obj, SpecLine ln
WHERE obj.specobjid = ln.specobjid
AND obj.specclass = 3

Q5: SELECT top 10 pt.specclass, pt.z FROM SpecPhoto pt
WHERE pt.zErr NOT IN

(SELECT DISTINCT p.zErr
FROM SpecPhoto p, SpecLine ln
WHERE p.specobjid = ln.specobjid)

Q: SELECT top 5 obj.specclass, obj.z FROM SpecObj obj
WHERE obj.z NOT IN
(SELECT DISTINCT j.z FROM SpecObj j, SpecLine ln
WHERE j.specobjid = ln.specobjid)

Figure 2: Q5 and Q are structurally similar as both are
nested top-k queries, but Q4 and Q are more similar based
on the tables they access, as they query SpecObj but Q5

queries SpecPhoto.

from large volumes of workload data at all levels [25], e.g.,
word, query, and session level. Instead of using manually
picked properties, neural networks provide suitable induc-
tive biases catered to queries [45], i.e., our models use work-
load data to exploit patterns and decide what syntactic
properties are relevant to our query recommendation task.

We model our sequence-aware query recommendation prob-
lem as a query prediction problem for a given user input. A
closely related NLP area is conventional interactive language
models such as chatbots whose goal is to respond to user in-
put [44, 37]. Instead of recommending whole queries, we
divide our query prediction task into query fragment pre-
diction and query template prediction. Given a query state-
ment, we use a sequence-to-sequence (seq2seq) model to pre-
dict query fragments and then use a classification model to
predict query templates. The seq2seq architecture is drawn
from the space of sentence-level NLP [28, 25, 32, 39, 41] and
query representation learning in databases [18, 20]. We use
a standard classification model from NLP [17].

We first train the seq2seq models to predict the successor
query and parse the model-generated query to extract query
fragments. Applying fine-tuning, we use the trained seq2seq
models for query template prediction as a classification task.
The trained seq2seq models contain compressed represen-
tations of the training data and hence provide a starting
point for downstream tasks [11, 18]. Fine-tuning has been
abundantly used in NLP for text summarization [29], text
classification [17], and text generation1 [12].

Deep learning models exploit the intrinsic structure in
data differently depending on the choice of neural networks [23,
45]. We follow the common practices in the related topics
and explore three seq2seq models, recurrent neural networks
(RNNs) with gated recurrent units (GRUs), the transformer,
and convolutional neural networks (CNNs). The models ex-
tract features in different ways: RNNs with GRUs recognize
the sequential dependencies between tokens in a query; the
transformer focuses on the relatedness between tokens re-
gardless of time and distances; CNNs automatically identify
n-grams in a query. We apply the models at the word level.

We leverage whole queries and introduce additional chal-
lenges, e.g., sequence-aware query recommendation. The
following is a summary of our contributions:

• We formally define a new approach that provides query
structural and contextual information to guide DBMS
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users to formulate next-step queries (Section 2).

• We conduct a thorough analysis of real-world workload
data to show the sequential changes in query syntactic
properties (Section 4).

• We adapt a broad set of neural network models to our
problem and show our modelling workflow (Section 5).

• We empirically evaluate our approach (Section 6).

We also give model background (Section 3), discuss re-
lated work (Section 7), and conclude (Section 8).

2. PROBLEM DEFINITION
We first present some preliminary definitions before ex-

plaining the query recommendation problem.

Definition 1. [Query] A query Q = (t1, ..., t|Q|) is a se-
quence of tokens ti from a vocabulary V . We consider a
vocabulary that contains words from SQL queries. We de-
fine v to denote the size of V and Q to denote the collection
of all queries over V . 2

Example 3. For the query “SELECT ∗ FROM PhotoTag
”, Q1 = (SELECT, ∗,FROM,PhotoTag) is a query with a
vocabulary of words, and Q2 = (S,E, L,E, ...) is a query with
a vocabulary of characters. 2

Definition 2. [Query Encoding] For a token ti in a query
Q, we define ei ∈ {0, 1}v as the one-hot encoding of ti, i.e.
a vector of bits for tokens in V where the bit that corresponds
to ti is 1 and all the other bits are 0. 2

Example 4. The query encoding of t1 = SELECT and
t2 = * w.r.t. a vocabulary V ={t1, t2, t3, t4} is the following
one-hot encoding: e1 =[1 0 0 0] and e2 =[0 1 0 0]. 2

Definition 3. [Session, Query Subsequence, and Work-
load] A (user) session S = (Q1, ..., Q|S|) is a sequence of
queries. A query subsequence refers to a pair 〈Qi, Qi+1〉 of
consecutive queries in a session. A query workload W is a
set of sessions {S1, ...,Sm}. 2

In our query recommendation setting, we assume a user
poses a sequence of queries that are recorded in a session
S∗. The goal in our recommender system is to help the
user in writing the next query, Q∗i+1, considering the last
posed query, Q∗i . A direct approach is to recommend an
entire query statement. However, this is often not practical
for several reasons. First, we often have limited knowledge
about the user’s intention based on the last query posed
by the user. Second, suggesting an entire query may not
necessarily help the user to compose the next query, espe-
cially if the predicted next query has very complex syntax
that may be difficult to understand. Another problem with
this approach is that recommending an entire query requires
models that can generate error-free queries (both syntax er-
ror and logical error), which is a challenging task.

For the above reasons, we define the query recommenda-
tion problem as a query property prediction task. Instead
of predicting an entire query, we predict certain properties
of the next query. This will better help the user compose
the query. We particularly focus on two query properties:
the structure of the next query, which we specify with query
templates, and the fragments of the next query such as table
names, attribute names, and built-in functions.

SELECT j.target, CAST(j.estimate AS VARCHAR) AS estimate
FROM Jobs j, Status s,

(SELECT DISTINCT target, queue FROM Servers r
WHERE r.queue NOT IN (SELECT MIN(queue)

FROM Servers
GROUP BY target))

WHERE j.outputtype LIKE ’%QUERY%’

Figure 3: Sample query Q

SELECT Attribute, Function(Attribute AS VARCHAR)
FROM Table, Table,
(SELECT DISTINCT Attribute, Attribute FROM Table
WHERE Attribute NOT IN (SELECT Function(Attribute)

FROM Table
GROUP BY Attribute))

WHERE Attribute LIKE Literal

Figure 4: The query template for query Q

Definition 4. [Query Fragment and Template] Given a
query Q, a query fragment is either a table, an attribute, or a
function in Q. We use tables(Q), attributes(Q), functions(Q),
and literals(Q) to respectively refer to the sets of these frag-
ments in Q. The template of Q, denoted by template(Q),
is the statement obtained from Q by replacing tables, at-
tributes, function names, and literals in Q with Table, At-
tribute, Function, and Literal resp., and removing aliases. 2

Example 5. Figure 4 shows template(Q), the template of
the query Q in Figure 3. The fragments of Q are tables(Q) =
{Jobs, Status, Servers}, attributes(Q) = {target, estimate,
queue, outputtype}, functions(Q) = {CAST,MIN}, and
literals(Q) = {%QUERY%}. 2

We use a query workload to collect information about the
queries and effectively predict the next query’s properties.
We define the query recommendation as query property pre-
diction tasks.

Definition 5. Let W = {S1, ...,Sm} be a workload over
a database D, and 〈Qi, Qi+1〉 be a query subsequence where
Qi is the last query the user posed to D, and Qi+1 is the next
query that the user will pose. The query template prediction
problem is to predict template(Qi+1). Similarly, the query
fragment prediction problems are to predict the sets of frag-
ments tables(Qi+1), attributes(Qi+1), functions(Qi+1), and
literals(Qi+1). 2

The prediction tasks in Definition 5 are the intrinsic build-
ing blocks of our query recommendation solution. A sum-
marization of our solution and the application of template
and fragment prediction is as follows: assume the user starts
a session by posing an initial query which presumably is not
the final intended query. To compose the next query, we
provide recommendations in two ways. First, we predict
the next query’s template to serve as a basis for the the user
to further modify and compose the next query. Second, we
predict the fragments in the next query and present them to
the user while she fills the fragments in the template. Our
solution provides a list of top-k templates and fragments.
We build the models in Section 5. We empirically evalu-
ate our solution in Section 6 and show the efficacy of our
recommendations as k increases.
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𝑄𝑖: SELECT

ℎ1

*

ℎ2

FROM

ℎ3

PhotoTag

𝑐 = ℎ4

SELECT𝑄𝑖+1:

𝑥1 𝑥2 𝑥3 𝑥4

𝑠1

𝑦0=<GO>

objId FROM SpecPhoto

𝑦5

<EOS>
(a) Encoder

(b) Decoder

𝑦1 𝑦2 𝑦3 𝑦4

𝑠2 𝑠3 𝑠4

Figure 5: An RNN seq2seq model that takes query Q in a
session and predicts the next query Q∗.

3. SEQUENCE-TO-SEQUENCE MODELS
We model sequence-aware query recommendation as a

query prediction problem for a given query input. A closely
related field is NLP. Sequence-to-sequence (seq2seq) refers to
models for solving supervised learning problems where both
the input and the target are sequences of tokens. These
models are used in a wide variety of applications in NLP
such as machine translation, headline generation, and text
summarization [39]. Seq2seq models with the state-of-the-
art performance are predominantly neural network models.

In this section, we provide the necessary background about
seq2seq models that we apply in Section 5. We review the
common encoder-decoder architecture of seq2seq neural net-
works models in Section 3.1, then we explain three seq2seq
models in Sections 3.2, 3.3, and 3.4, which we will apply for
fragment prediction. We review a fine-tuning that we use to
build new models for classification problems to address the
template prediction task.

3.1 Encoder-Decoder Seq2Seq Architecture
Sequence-to-sequence (seq2seq) models aim to map an in-

put sequence (x1, ...,xn) to a target sequence (y1, ...,ym),
where xi,yj ∈ Rd are d-dimensional vectors representing
the input and target tokens. In these models, the encoder
reads the input, token-by-token or in-parallel, and computes
hidden states h1, ...,hn. The decoder receives a context vec-
tor c = g(h1, ...,hn) that represents the input sequence, and
it generates an output sequence.

For query recommendation application, an input sequence
(x1, ..., xn) represents a sequence of tokens (t1, ..., tn) in
an input SQL query Qi from a session S where each xi =
ei is the one-hot representation of token ti. The target
(y1, ...,ym) represents the next query Qi+1 in the session
S. The seq2seq models compare their output query to the
target query to improve the encoder’s ability to summarize
queries with numeric vectors and the decoder’s ability to
use the vectors to map the input to the target. This seq2seq
architecture is used as an autoencoder in [18] for query rep-
resentation learning, where xi = yj , and the main focus is
the context vector c. Instead, our work uses this architec-
ture to predict the next query, where xi 6= yj , and we focus
on the decoder output sequence (see details in Section 5). In
addition to the RNN model explored in [18, 20], we adapted
the transformer and CNN models in Section 5.

3.2 RNN Seq2seq Model with GRUs
Recurrent Neural Networks (RNNs) are neural networks

for processing sequential data [39, 8]. An RNN takes an in-
put sequence (x1, ...,xn) one token at a time and generates
a hidden state (h1, ...,hn). An element hi of the hidden
state is computed at each time step i and contains the se-
mantic meaning of the sequence tokens seen so far. The
output yj has the same size as the input xi.

Standard RNNs suffer from vanishing and exploding gra-
dient problems, which impair their ability to handle long-
term temporal dependencies. LSTM networks resolve these
issues by extending RNN with a memory cell and a set of
gates that decide to input, output, or forget information.
Similar to LSTM units, Gated Recurrent Units (GRUs) also
use gates to control information flow but without separate
memory cells. RNNs with GRUs have been shown to out-
perform LSTM networks on sequence modelling tasks while
being computationally more efficient [9, 23].

An RNN seq2seq model consists of an RNN encoder and
an RNN decoder that are connected through the context
vector c [3, 4]. Figure 5 shows such a model with an input
and output queries. The context vector c encodes all the
information from the input sequence and allows the model
to map sequences of different sizes, whereas standard RNN
that has input and output of the same size. The decoder
uses the final hn from the encoder to set the context vector
as its initial state (c = hn) and the standard RNN formula
with the encoder outputs to estimate the conditional proba-
bility. Similar to the encoder, the decoder RNN also workd
iteratively. At the j-th iteration, it generates the output to-
ken yj using sj−1 and yj from the previous iteration. In our
query recommender, we implement the encoder and decoder
with one layer RNNs with GRUs [9]. In our application of
RNN seq2seq model, we pass the decoder’s output to a soft-
max layer to generate the probabilities of each token in the
output query. We apply the cross-entropy loss and use the
Adam optimizer with default settings.

3.3 The Transformer
Transformers are seq2seq models designed to solve two

problems faced by the RNN seq2seq models: long training
time due to recurring structure of the RNN encoder and
drop in performance due to long temporal dependencies [41].
Instead of sequentially processing an input sequence token-
by-token as in an RNN seq2seq model, transformers take an
input sequence as a whole and read the tokens in-parallel.

Transformers apply the attention mechanism to compute
more meaningful representations by scoring tokens based on
their relatedness to others. The attention mechanism is first
introduced in [3] where the authors extend the RNN seq2seq
model with context vectors cj for each output token yj . Un-
like the context vector c in the recurrent model that is equal
to the last hidden state hn, cj is a weighted sum of the all
the hidden states and is defined as cj =

∑
j∈[1,m](αji×hi).

The weight αji is a probability that the token yj is aligned
to, or translated from, an input token xi. This allows these
models to “attend to” certain parts of the input while gen-
erating each output token. For example, in Figure 6, the
context vector c4 with a large weight α44 means the output
x4 mainly attends to the hidden state h4 of the input y4

and the table name PhotoTag. This implies that users who
access SpecPhoto in a query often query PhotoTag next.

Transformers apply different forms of attention that we
briefly explain here and refer the readers to [41] for more
detail. Transformers use self-attention to compute which in-
put tokens we should attend to while we calculate the hidden
representation of an input token. Similarly, self-attention is
applied to previously computed output tokens when we cal-
culate the current output token using masking that ignores
the next tokens. Transformers also attend to the input to-
kens when computing the outputs as in the conventional
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𝑠3

𝑦3= FROM

𝑠4

𝑥1= SELECT 𝑥2 = ∗ 𝑥3=FROM 𝑥4=PhotoTag

(a) Encoder

ℎ1 ℎ2 ℎ3 ℎ4

𝛼41 𝛼44
𝛼42 𝛼43

𝑐4

(b) Decoder
𝑦4 = SpecPhoto

Figure 6: Attention mechanism in seq2seq models.

attention mechanism shown in Figure 6. To compute atten-
tion, transformers use the dot product attention mechanism,
where the tokens to attend to are represented with keys and
values and the current token is represented as a query (not
to be confused with the queries in our recommendation solu-
tion). Keys, values and queries are matrices and computing
attention is reduced to matrix multiplication which can be
performed efficiently. Transformers further refine attention
by adding a concept of multi-head attention, which gives the
model multiple sub-representations of the input by expend-
ing its ability to focus on different tokens [41].

We use a standard transformer model [41, 24]. The en-
coder is consist of six identical layers, and each has two
sub-layers. The first sub-layer implements a multi-head self-
attention mechanism, and the second is a fully connected
feed-forward network. The decoder has a similar structure.
In addition to the two sub-layers in each encoder layer, the
decoder includes a middle sub-layer that performs multi-
head attention over the encoder output matrix. The self-
attention layer is slightly different from the encoder as the
current and future tokens are masked w.r.t. a position so
the decoder is only allowed to attend to the tokens prior to
a position. The vector output of the decoder stack is passed
to a fully connected neural network and a softmax layer to
estimate the probability of the words in our vocabulary. We
use the Adam optimizer with default settings.

3.4 Convolutional Seq2seq Model
CNNs are feed-forward neural networks that can effec-

tively recognize patterns in data, and are used mainly in
vision for image and video recognition, analysis, and classi-
fication. More recently they are also used in sequential data
analysis such as NLP and time series’ analysis. A CNN ap-
plies convolving filters to extract local patterns or features.
A convolving filter is a fixed size kernel matrix that is used
to slide through the input and compute the dot product.
The application of CNNs in NLP enables the model to au-
tomatically identify n-grams in input and create a semantic
representation. Unlike RNNs, CNNs’ performance is inde-
pendent of the input length and allows parallel computation.

CNNs are also used in a seq2seq model that we apply for
our query recommendation tasks [15, 40]. In the model’s
encoder, the input sequence xi = (x1, ...,xn) is embedded
in a distributional space as a sequence xi

′ = (x′1, ...,x
′
n)

with x′i ∈ Rm. The encoder and decoder in CNN seq2seq
share a multi-layer structure. Each layer contains a one di-
mensional convolution followed by a non-linear activation
function. Stacking multiple layers allows the model to cap-
ture long temporal dependencies in the input. The output
of the l-th layer is denoted as hl = (hl

1, ...,h
l
n) for the de-

coder, and zl = (zl
1, ..., z

l
n) for the encoder. The layers in

encoder and decoder have a similar structure. Gated lin-
ear units (GLU) are used to enable the networks to control
which inputs of the current context are relevant.

SELECT * FROM PhotoTag <P><P>

BA

Input
Embeddings (𝑋𝑙)

Convolutons

Output (𝑌𝑙)

Gated 
Linear 
Units

BABABA

Figure 7: One layer of a CNN Seq2seq Model.

The decoder output hL in the last layer L is passed through
a fully connected layer and a softmax layer to compute the
probability distribution to generate the output sequence yj .
CNN seq2seq architecture also relies on multi-step attention
that applies a separate attention mechanism in each layer of
the decoder and improves learning through a normalization
strategy (see [15] for more detail).

3.5 Fine-Tuning Seq2Seq Models
We use a fine-tuning technique to build a prediction model

for the query template prediction task, which is a classifi-
cation problem. Fine-tuning is widely used in many com-
puter vision applications [38, 16, 30] and it has been recently
adapted for NLP [17]. Computer vision models, including
image classification, object detection, semantic segmenta-
tion, and image captioning, are rarely trained from scratch
and instead they are fine-tuned from general models that
are pre-trained using large common datasets to work with a
particular dataset. In NLP, this is applied by pre-training
a language model (LM) from a large corpus of text, such as
Wikitext extracted from Wikipedia, then fine-tuning it for a
target dataset, and finally fine-tuning the model for a partic-
ular task on the same dataset [17]. In Section 5, we explain
the application of fine-tuning for template prediction task.

4. WORKLOADS AND ANALYSIS
We describe the two, real world, large-scale workloads

(Section 4.1 and 4.2), we analyze them (Section 4.3), and
explain the implications of our analysis on data sampling,
model selection, and model evaluation (Section 5).

4.1 SDSS Workload
The Sloan Digital Sky Survey (SDSS) database stores im-

ages, spectra, and catalog data for more than three million
astronomical objects with 87 tables, 46 views, 467 functions,
21 procedures, and 82 indices [34]. SDSS offers several on-
line data access tools. Its user groups, ranging from high
school students to astronomers, have varied user intent and
diverse levels of knowledge in astronomy and SQL. SDSS
provides a publicly-available workload that is the result of
user interactions collected since 2001. We used the archived
workload data that spans from 2002 to 2011 and extracted
the following information for each SQL query entry:

• The query, the raw query statement extracted from
the ”SqlStatement.statement” attribute.

• The start time, from the ”SqlLog.theTime”, a date-
time value that indicates the start time of the query.
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• The session ID, from the ”SessionLog.sessionID” at-
tribute. Each session is a mix of SQL query entries and
webhit entries that are sorted first by client IP address
and then by time. When the time gap between succes-
sive hits from the same client IP passes 30 minutes, a
new session is created.

• The session class label, extracted through a series
of joins described in [46]. There are seven session
classes. We use browser sessions, identified as query
sessions created by human users [34, 35].

4.2 SQLShare Workload
The SQLShare workload is collected from SQLShare [19],

a database-as-a-service platform [19], where human users
upload their data and write queries to interact. Its users
also range from students to domain experts. It also provides
a publicly-available workload, which provides exemplars for
query sequences over short-term, user-uploaded datasets in
various domains, ranging from biomedical to ocean sciences.
We extracted the following information for each query entry:

• The query, the raw query statement in the “Query”
attribute.

• The start time, from the “start time” attribute.

• The session ID, identified using SDSS’s definition for
query sessions [34, 35]. We sorted data first by the
“Owner” attribute and then by time. The value of the
“Owner” attribute is an ID that indicates the user who
posed the query entry. We created a new session when
two successive queries from the same owner are more
than 30 minutes apart.

Since users upload their own datasets to SQLShare, the
query sessions can operate on their individual datasets and
be oblivious to the datasets used in other sessions by other
users. This characteristic makes the SQLShare workload a
collection of individual workloads with a variety of schemas,
rather than one schema used in the SDSS workload. This
difference in the SDSS and SQLShare service is reflected in
the analysis in Section 4.3 and then leads to the differences
in how we handled the workload data in Section 5.1.

4.3 Workload Analysis
We separately analyze the SDSS and SQLShare workload

to illustrate the importance of query subsequences and us-
ing query statements as a whole in understanding user intent
and query recommendation. We show the session statistics
(Section 4.3.1), explore sequential changes in syntactic fea-
tures (Section 4.3.2) and query templates (Section 4.3.3).
Since we focus on query fragments and templates, we re-
placed the numeric literals with a <NUM> token.

4.3.1 User Session Analysis.
We group the workload data by session and extract the

following statistics to understand how much queries vary
in a session: Sessions length is the number of queries in a
session, Unique queries is the number of unique queries in
a session, and Sequential changes is the number of times a
successive query differs from the one preceding it in a session.
This value reflects the scenarios where users switch back and
forth between queries, e.g., only three unique queries but six
consecutive changes in a session.

(a) SDSS

(b) SQLShare

Figure 8: Session statistics

The SDSS workload has close to 18 million sessions, 932
million webhits, and 194 million SQL entries in total across
seven classes. Browser sessions are generated by human
users [34, 35]. There are 267,577 browser sessions with
6.3 million SQL entries. 76.8% of the sessions have more
than one SQL entry, and 69.6% have more than one unique
query. The SQLShare workload has 2,930 sessions with
26,727 queries. 79.9% of the sessions have more than one
query, 77.3% have more then one unique query, and approx-
imately 64% have more than one sequential change.

Our analysis of the SDSS and SQLShare session statis-
tics (Figure 8) shows the frequent changes in queries, and
majority of the human users post a variety of queries in se-
quence to achieve session intent. Although SDSS and SQL-
Share have similar session statistics in median, mode, and
minimum, on average, SDSS has longer sessions but fewer
unique queries per session. One possible reason derives from
the use of the SDSS service. For instance, SDSS users often
repeatedly pose the same query statement with changes in
numeric literals to browse different images. The SDSS ses-
sions’ standard deviation and maximum values of all three
session properties are much higher than SQLShare. One
possible explanation lays in the complexity of the schema
in the workloads. Since the SDSS workload has 87 tables
and 46 views, SDSS users have access to more than three
million astronomical objects to explore and thus, tend to
pose more queries in a session, compared to the SQLShare
users who interact with user-uploaded datasets. These ob-
servations suggest user needs for the assistance to formulate
queries, especially for users who are not familiar with the
SQL language and the database.

4.3.2 Query Subsequence Analysis
Our work aims to use query subsequences defined in Def-

inition 3 to capture the sequential changes in query frag-
ments and template. We analyze query syntactic properties
to understand the changes in query subsequences. We used
the ANTLR parser to generate the Abstract Syntax Trees
(AST) of queries and extracted six syntactic properties [46]:
Word count, Function count, Table count, Predicate count,
and Selected columns are subsequently the numbers of words,
functions, unique tables, predicates, and selected columns in
a query, and Predicate column refers to the number of table
names in the predicates of a query.

Example 6. For Q in Figure 3, Word count = 36, Func-
tion count = 1, Table count = 3, Predicate count = 2 (NOT IN,
LIKE), Selected columns = 5 (Jobs.target, Jobs.estimate,

6



Figure 9: Changes in the syntactic properties of SDSS query subsequences.

Figure 10: Changes in the syntactic properties of SQLShare query subsequences.

Servers.target, Servers.queue, Jobs.outputtype), and Predi-
cate column = 1 (Servers). 2

To capture the sequential changes in query statements,
we used the differences in the six syntactic features between
two consecutive queries of a session. We obtained query
subsequences as the following. We first grouped queries by
session ID, sorted queries by the start time, and dropped
the sessions with only one query entry. In each pair, the two
queries are from the same session and are consecutive based
on the start time, and the first query has an earlier start
time than the second. For every pair, we took the difference
between the two queries in the six syntactic features.

We obtained query subsequences from the SDSS and SQL-
Share workload separately. From our analysis on the SDSS
workload (Figure 9), out of 6 million subsequences, 7.69%
use more tables in their second queries, 13.87% select more
attributes, 13.52% use more predicates, 13.65% include more
tables in the predicates, 10.38% use more functions, and
16.26% become longer. The percentage is similar for the
subsequences that decrease in our syntactic measurements.

In the SQLShare workload (Figure 10), out of 23,797 query
subsequences, 4.83% increase their table count in the second
query, 11.87% select more attributes, 9.22% use more pred-
icates, 9.45% include more tables in their predicates, 8.82%
use more functions, and 12.71% get longer. Compared to
SDSS, queries in the SQLShare workload sequentially be-
come less complex based on our syntactic properties. 9.45%
of the subsequences use fewer tables in their second query,
19.86% select fewer attributes, 16.71% use fewer predicates,
17.78% include fewer tables in the predicates, 11.82% use
fewer functions, and 40.32% become shorter. A possible im-
plication is that SQLShare users tend to pose more targeted
and simplified queries as they interact with the application.

Compared to SQLShare, the sequential changes in the
syntactic properties of the SDSS workload have a more dra-
matic value range and standard deviation in the number of
selected attributes, predicates, tables in the predicates, and
word count. We attribute that to the fundamental differ-
ences in the applications. For instance, SDSS database has
87 tables and 46 views available to users, while the datasets
uploaded to SQLShare by human users would likely be sim-
pler. Hence SDSS users would have a greater variety of
query fragments when formulating queries.

4.3.3 Query Template Analysis.
Our work aims to help users write queries by recommend-

ing query templates defined in Definition 4. Query templates

(a) SDSS

(b) SQLShare

Figure 11: Template statistics

consist of SQL keywords and reflect the SQL structure of
query statements. Given a query statement Q, we obtained
template(Q) by replacing tables, attributes, functions, and
literals with the corresponding tokens. In this analysis, we
used the whole SQLShare workload and randomly sampled
25% of the sessions in the SDSS workload and analyzed tem-
plates at the session and subsequence level to assess user
needs for query structural information: Unique templates
is the number of unique templates in a session, Template
changes is the number of sequential changes in query tem-
plates within a session, and Change in template is whether a
query subsequence has two distinct templates.

Sessions use a variety of query templates (Figure 11). In
the SDSS workload, 78.6% of sessions use more than one
unique template, and 64.2% of sessions change query tem-
plates more than once. The number is 68.3% and 55% re-
spectively for the SQLShare workload. We also assessed the
change in templates in query subsequences. 39.5% of the
SDSS query sequences have two unique templates, while the
number is 61.5% for SQLShare. Overall, the SDSS sessions
have fewer unique templates but more sequential changes in
templates than the SQLShare sessions. Although SQLShare
sessions are overall shorter, they use more unique templates.
These observations align with the session analysis, where we
show that SDSS sessions are longer but with less variety in
query statements, which can be explained by the differences
in the workloads discussed in Section 4.3.1.

5. MODELLING WORKFLOW
We used the workload analysis to guide our data prepro-

cessing (Section 5.1), model selection (Section 5.2), train-
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ing (Section 5.3), and evaluation (Section 5.4). In this sec-
tion, we address the unique challenges that comes with our
sequence-aware query recommendation problem.

5.1 Data Preprocessing
We took the following steps to construct datasets from

the SDSS and SQLShare workload for building the models.
First, to maximize the seq2seq model performance, we pro-
cessed query statements for the models to easily learn the
semantic meaning and construct sensible predicted queries.
Since our approach uses model-generated queries, the mod-
els operate at the word level to obtain a collection of sensible
tokens as vocabulary.

Second, we extracted query subsequences from query ses-
sions to allow our models to capture the sequential changes
in query statements. Similarly to Section 4.3.2, we first
sorted SQL query entries by their session ID and start time
and dropped sessions with only one query entry. Since we
focus on capturing the changes, for each session, we then
dropped the consecutive query statement duplicates. We
obtained 3.8 million SQL query entries and 289,370 unique
query statements from the SDSS workload and 22,719 query
entries and 21,625 unique statements from SQLShare. We
obtained 3.6 million subsequences from the SDSS workload
and 20,773 subsequences from the SQLShare workload.

From our SDSS workload analysis, we found redundant
query statements within and across sessions, leading to du-
plicates in query subsequences. In training, the models
would give more weight to the query statements that appear
more often. Although it is unlikely that a query that appears
ten more times carries more information about query seman-
tics, we keep the duplicated subsequences in our datasets to
allow the models to focus on more popular query statements
for our prediction tasks. We randomly sampled 25% of the
SDSS query sessions to obtain a manageable subset. Our
final dataset extracted from the SDSS workload has 896,861
query subsequences with 46,336 unique query statements.
Finally, we assigned a template class to each query state-
ment for our template prediction problem. The extracted
SDSS dataset has 17,007 unique templates, while SQLShare
has 5,229 unique templates.

5.2 Model Selection
We model query recommendation as a query prediction

problem for a given query. A closely related field to han-
dling SQL queries is NLP. Our problem is similar to a text
prediction problem, where interactive language models such
as chatbots are trained with subsequences of phrases to re-
spond to user input. Instead of traditional NLP models that
rely on feature engineering, we use deep learning models that
automatically exploit the intrinsic features in data.

We assessed three deep learning architectures described in
Section 3. RNNs recognize text as a sequence of tokens, and
GRUs help to capture dependencies between tokens in long
sequences using a gating mechanism. However, their per-
formance diminishes as sequences elongate, and their recur-
ring structure leads to long training time. Thus we adapted
transformers that capture the relatedness between tokens
regardless of the distance between tokens using an atten-
tion mechanism. Rather than taking in tokens one-by-one,
the transformer reads tokens in-parallel. CNNs are another
family of deep learning architectures that are known to be

competitive in NLP. They are feed-forward neural networks
that automatically identify local patterns such as n-grams.

However, SQL queries are also different from natural lan-
guages. SQL queries follow a certain grammar depending on
the DBMS application and have syntactic errors if the gram-
mar is violated. The direct, model-generated queries from
seq2seq models can contain syntactic errors. Recommend-
ing whole queries may not be helpful since queries can also
be complex and hard for human users to understand and
modify, especially when the user is not familiar with the
schema and syntax. Hence to make our query prediction
problem tractable and simplify the recommended informa-
tion for users to understand and use, we separated our query
prediction problem into query fragment prediction and tem-
plate prediction.

5.3 Model Training
We aim to justify the importance of query subsequences

and deep learning architectures in query recommendation.
To isolate the effect of our sequence-aware approach, we
built two sets of models with different tasks using the same
neutral network architectures. The difference lays in how
the query subsequences in the training set are constructed.

We trained the sequence-aware (seq-aware) models with a
query prediction task. Given a query subsequence 〈Qi, Qi+1〉
in the training set, we used Qi as the model input sequence
and Qi+1 as the target sequence. We train the sequence-
blind (seq-blind) models with a reconstruction task. Given
a query subsequence 〈Qi, Qi〉 in the training set, we used Qi

as the model input sequence and Qi as the target sequence.
In training, we first built the vocabulary as a collection of
word tokens from the training set. We used the standard
cross-entropy loss in training. Cross-entropy loss decreases
as the predicted probability converges to the actual token for
a given step. The application of the trained models for query
fragment prediction has two steps (cf Figure 12). First, we
input to the models the last query Q∗i in the current user ses-
sion, and we receive a output query Q∗i+1. Second, we parse
Q∗i+1 and report its fragment as the prediction results.

…

…

SQL 
Parser𝑄𝑖+1

∗

Query 
Fragments𝑄𝑖

∗

Seq2Seq Model

…

…

𝑄𝑖+1
∗

𝑄𝑖
∗

Query 
Template

Seq2Seq Model

Classifier Fine-Tuning

Figure 12: Query fragment prediction.

We built classification models described in Section 3.5 for
template prediction. The seq-aware classification models
were trained with 〈Qi, template(Qi+1)〉, while the seq-blind
classification models were trained with 〈Qi, template(Qi)〉.
In addition, we aim to justify the efficacy of fine-tuning in
template prediction. Figure 13 shows the overview of fine-
tuning a classification model for our template prediction
task. To apply fine-tuning, we used the trained encoder from
the seq2seq models and augmented the classification model.
The trained encoder has learned to extract features from
query statements that are relevant to query prediction and
is used to turn the input query into a vector representation.
In comparison to the augmented classification models, we
trained the classification models alone using both seq-aware
and seq-blind training set. We also used cross-entropy loss.
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Figure 13: Query template prediction.

5.4 Model Evaluation
Our work aims to help users write queries by recommend-

ing query fragments and templates as Definition 4. In eval-
uation, we parsed the model-generated next query to ob-
tained the predicted fragments and string literals. Since
all the queries in the SDSS workload operate on the same
schema that is complete and publicly available, we were able
to separate the tables, attributes, and functions by parsing
the queries and then checking against the schema. However,
since only selected schemas used in the SQLShare workload
are available, we combined the fragments in the evaluation
for fragment prediction using the SQLShare workload.

To assess the performance of deep learning models, We
compared the seq2seq models to the binary fragment-based
collaborative filtering approach employed by the QueRIE
framework [13, 1]. The QueRIE framework first turns queries
into vectors. Given Qi, this approach constructs vectors
based on the tables and attributes used in Qi. It then rec-
ommends historical queries in the workload that are the clos-
est to the user input query using cosine similarity. Since it
requires access to the schema, we were able to assess this
approach using the SDSS workload but not SQLShare.

We aim to help users with limited experience explore with-
out overwhelming them with less relevant information. Fol-
lowing [13, 1, 46], we use different k values to further assess
performance based on the fragments and templates of the
top-k recommended queries. We use beam search decoding
to obtain the top-k queries from the seq2seq models. Beam
search is a decoding method generates top-B candidate out-
put sequences with the highest score at each step; where B
is known as the beam width [43, 27, 42]. At each step, beam
search considers all possible tokens and selects the B most
likely extensions. The search is repeated until a limited time
or until all top-B sequences terminate. This allows for mul-
tiple sequences to be explored in parallel instead of a single
sequence in greedy decoding.

In our case, beam width B is equal to k. In particular, we
use beam search in fragment prediction task to find k next
queries with highest score. We then extract the query frag-
ments and return to the user. An alternative to beam search
is to use the probabilities returned by the softmax function
at each step of a greedy decoder to find top-k fragments. Our
experimental evaluation shows that applying beam search
outperforms this alternative approach, specially for larger
values of k. This is because the softmax function often re-
turns higher probabilities for a few top tokens and the prob-
abilities drop for the remaining top k tokens. This suggests
that probabilities at each step do not provide significant
support for recommending top-k fragments.

6. EXPERIMENTAL EVALUATION
We evaluate the efficacy of the combination of deep learn-

ing models and query subsequences in query recommenda-

tion. In particular, the methods take a query Qi as input
and predict the query fragments (Section 6.2) and template
(Section 6.3) of the next query Qi+1. Using the SDSS and
SQLShare workload data, we compare the performance of
two baselines, sequence-aware (seq-aware) models, sequence-
blind (seq-blind) models, and binary fragment-based collab-
orative filtering approach in the QueRIE framework [13, 1].
We acknowledge that the QueRIE framework concerns with
a different query recommendation problem.

6.1 Setup

6.1.1 Data Split
We used the SQLShare workload and our extracted SDSS

workload to evaluate the model performance on both frag-
ment prediction and template prediction. Our SDSS work-
load has 896,861 query subsequences with 46,336 unique
query statements, while the SQLShare workload has 20,773
subsequences with 21,625 unique statements. For both work-
loads, we used a (80/10/10) random split for the train, val-
idation, and test sets, respectively.

6.1.2 Methods Compared
Our goal is to show that the seq-aware seq2seq methods

outperform existing techniques. Thus we compared the var-
ious models from Section 5.3, where seq-aware models are
trained with a prediction task using query subsequences,
while seq-blind models are trained with a reconstruction
task. To assess the effectiveness of deep learning models,
we include the binary fragment-based collaborative filtering
approach in the QueRIE framework [13, 1]. Additionally,
we include two simple baselines for each prediction task. To
predict the fragments in Qi+1, the baseline1 uses the most
popular fragments, and the baseline2 uses the fragments in
Qi. For template prediction, the baseline1 uses the most
popular templates, and the baseline2 uses the template in
Qi. We augmented the trained encoder from the seq2seq
models with the fully-connected classification model in Sec-
tion 3.5. We assessed the performance of the fully-connected
classification model to evaluate the efficacy of fine-tuning.

6.1.3 Hyper-Parameter Tuning
We tuned the hyper-parameters based on the seq-aware

models for the fragment prediction task using the SDSS
workload. Following [46, 41, 15], we constrained the range
of the hyper-parameters of each model to make the tuning
tractable. For the RNN models, we assessed the number of
hidden layers in {1, 6} and hidden size in {150, 350}. For
the transformer models, we tested the number of layers in
{3, 10}, hidden size in {256, 1028}. For the CNN models,
we tested the same range for number of layers and hidden
size with kernel size in {3, 5}. We tested the hidden size
in {300, 2000} for each classification model using the SDSS
workload. We tested dropout in {0.1, 0.5} for all models.
The hyper-parameters are selected based on the best vali-
dation loss. We report the performance of the best models
and used the same set of hyper-parameter to train the seq-
aware models for the SQLShare workload and the seq-blind
models for both workloads.

6.1.4 Performance Metrics
For fragment prediction, we report the test average re-

call and F-measure on the fragments and literals to evaluate
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Method SQLShare SDSS

F-measure Recall F-measure Recall

seq fra lit fra lit tab att fun lit tab att fun lit

baseline1 - 0.1398 0.0744 0.0834 0.0554 0.5687 0.1773 0.5156 0.0529 0.5685 0.1139 0.5159 0.0354
baseline2 - 0.6052 0.5564 0.6981 0.5002 0.4619 0.5493 0.3796 0.2862 0.5457 0.5499 0.5413 0.2755
QueRIE - - - - - 0.5797 0.4641 0.5631 0.0598 0.4988 0.4727 0.4326 0.0556

rnn × 0.6168 0.5115 0.7256 0.4351 0.5734 0.5714 0.5648 0.2669 0.4779 0.5695 0.4042 0.2622

transformer × 0.5945 0.5652 0.6655 0.4489 0.5869 0.5645 0.5975 0.2986 0.4820 0.5611 0.4322 0.2918
cnn × 0.4024 0.3840 0.2162 0.1304 0.5784 0.5604 0.6013 0.2981 0.4750 0.5620 0.4421 0.2907

rnn X 0.6183 0.4489 0.5984 0.3296 0.7226 0.6507 0.6832 0.1758 0.6335 0.6526 0.5510 0.1743

transformer X 0.6482 0.6304 0.6260 0.5520 0.7675 0.6646 0.5273 0.1895 0.7050 0.6648 0.3811 0.1874

cnn X 0.3878 0.1966 0.3681 0.1348 0.7703 0.6303 0.2083 0.0348 0.7539 0.6223 0.1370 0.0337

Table 1: Query fragment prediction using greedy decoding, where fra, lit, tab, att, and fun are fragments, string literals,
tables, attributes, and functions respectively. seq shows if the model is seq-aware with X and seq-blind with ×. baseline1
uses the most popular fragments, whereas baseline2 uses the fragments in Qi.

model performance and the test average precision, recall,
and F-measure to evaluate performance of the top-k param-
eter. F-measure is computed by 2×Precision×Recall

Precision+Recall
, where

precision is the number of correct fragment predictions over
the number of total fragment predictions, and recall is the
number of correct fragment predictions over the number of
total target fragments. For template prediction, we report
the test average accuracy to evaluate model performance
and the test average recall for performance varying k.

6.2 Fragment Prediction

6.2.1 Model Performance
Table 1 shows the fragment prediction results. We used

greedy decoding described in Section 5.4 to obtain the model-
predicted query. For the SQLShare workload, the baseline2
outperforms the baseline1 for fragments and literals due to
the nature of the SQLShare service. SQLShare users upload
datasets and only have access to the uploaded data. Con-
sequently, SQLShare query sessions operate on a variety of
datasets with different schemas. In such a setting, it is easy
for the baseline2 to perform well as it has the context of the
next query and is oblivious to other schemas in the training
set. The seq2seq models have access to all the schemas in the
training set and have to learn from the workload to distin-
guish the schemas and recommend relevant fragments and
literals. Although the baseline2 and seq-blind rnn achieve
high recall in fragment prediction, the seq-aware transformer
outperforms others with high precision.

For the SDSS workload, since SDSS has the same schema
available to all users, queries across all sessions operate on
the same set of fragments. The baseline1 achieves high per-
formance in table and function prediction, while the baseline2
performs well in attribute and literal prediction as they rely
on the context of the query. For table and attribute predic-
tion, all of the seq2seq models improve upon the baselines
and the QueRIE framework. The seq-aware cnn performs
the best in table prediction, while the seq-aware transformer
performs the best in attribute prediction. The seq-aware
rnn obtains the best performance in function prediction. In
string literal prediction, all the seq-blind models perform
similarly to the baseline2, and the seq-blind transformer
achieves the best performance.

6.2.2 Evaluation of the Top-k Parameter

We increased the number of recommended queries k to
evaluate the methods as users request more fragments (Fig-
ure 14). We varied k in {1, 16} and found that the trend
remains unchanged when k > 10. We used beam search de-
coding described in Section 5.4 to obtain the top k model-
generated queries from the seq2seq models. We found that
the seq-blind rnn outperforms other seq-blind models. Thus
to simplify Figure 14, we reported the performance of the
baseline1, seq-blind rnn, seq-aware rnn, seq-aware trans-
former, and seq-aware cnn. Figure 14a shows the results
on the SQLShare workload. All the seq2seq models outper-
form the baseline1. In fragment prediction, although the
seq-blind rnn achieves high recall, the seq-aware rnn and
transformer perform better in precision and outperform oth-
ers as k increases. They also outperform the seq-blind rnn
by 0.1 for all measures in literal prediction.

Figure 14b shows the results on the SDSS workload, where
a shortlist of tables and functions are very popular among
users. In table, attribute, and function prediction, although
the baseline1 obtains high recall, all the seq2seq models out-
perform the baseline in precision and F-measure. All the
seq-aware models outperform the QueRIE framework in ta-
ble, attribute, and literal prediction. Specifically, all the
seq-aware models achieve and maintain high performance in
table prediction. In attribute prediction, the seq-aware rnn
and transformer preform the best as k increases. The seq-
aware rnn also maintains high precision in function predic-
tion and performs the best overall. In literal prediction, all
the seq2seq models except CNNs outperform the baseline1,
and the seq-blind rnn performs the best.

6.2.3 Discussion
We observed the following: (1) CNNs perform better on

the SDSS workload than on SQLShare. Since a number of
different schemas are used in the SQLShare workload, the
query statements consist of more diverse vocabulary and n-
grams. This characteristic makes it more difficult for the
CNN architecture to find local patterns and predict frag-
ments. (2) CNNs outperform others by far in table predic-
tion on the SDSS workload. The SDSS workload queries
share the schema, and tables often appear as a group in the
WHERE clause. For these reasons, CNNs are more likely
to capture tables. (3) The baseline2 and seq-blind rnn and
transformer have similar results on both workloads. For
SDSS, the seq-blind models outperform the baseline2 as the
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(a) SQLShare (b) SDSS

Figure 14: Fragment prediction performance using beam search decoding as k increases. k is the number of queries recom-
mended by the methods. baseline1 uses the most popular fragments. The shadow shows the 95% confidence interval.

Method seq SQLShare SDSS

baseline1 - 0.1146 0.3323
baseline2 - 0.4531 0.6156
QueRIE - - 0.4154

fully-connected × 0.3975 0.3185
rnn × 0.4549 0.3269
transformer × 0.4497 0.3397
cnn × 0.1727 0.3173

fully-connected X 0.4659 0.6949
rnn X 0.4739 0.7299

transformer X 0.5100 0.7395
cnn X 0.2169 0.6687

Table 2: Query template prediction accuracy. seq shows if
the model is seq-aware with X and seq-blind with ×. base-
line1 uses the most popular template, whereas baseline2 uses
the template of Qi.

seq-blind models can learn from other queries used for the
same schema. For SQLShare, it is more challenging for the
seq-blind models to generalize the learning. (4) Varying
k, the seq-blind rnn and transformer perform similarly to
the QueRIE framework. Both approaches use query simi-
larity to make recommendations, but the seq-blind models
use whole queries instead of the hand-picked features in the
QueRIE framework. (5) Overall, in table, attribute, and
function prediction, the seq-aware transformer outperforms
others. Given long queries, the transformer architecture can
relate the word tokens in a query regardless of how far they
are apart from each other. This characteristic enables the
transformer models to learn and preserve information bet-
ter in comparison to the RNN-GRU architecture. (6) Re-
garding the generalization of model performance on different
workloads, the seq-aware transformer is able to apply the
attention mechanism and recognize the relatedness among
individual word tokens in a query.

6.3 Template Prediction

6.3.1 Model Performance
Table 2 shows the template prediction accuracy of the

models. The baseline2 performs better than the baseline1

Figure 15: Template prediction recall as k increases. The
shadow shows the 95% confidence interval. baseline1 uses
the most popular templates.

for both workloads. For the SQLShare workload, the seq-
blind rnn and transformer perform similar to baseline2. Ex-
cept for the CNN model, all the seq-aware models improve
upon the baseline2. For the same architecture, the seq-aware
models also outperform their seq-blind counterparts. For
SDSS, all the seq-aware models drastically improve upon the
baseline2. For both workloads, the seq-aware rnn and trans-
former consistently perform well with the seq-aware trans-
former achieving the best accuracy. We acknowledge that
the QueRIE framework does not consider SQL structure.

6.3.2 Evaluation of the Top-k Parameter
Figure 15 shows model recall with k in {1, 10}, where

k is the number of recommended templates. We evaluated
the quality of the recommended templates as its number in-
creases. We included the baseline1, seq-blind rnn, seq-aware
fully-connected, seq-aware transformer, and seq-aware cnn.
For both workloads, the RNN and transformer architecture
achieve the best recall and perform similar in both seq-blind
and seq-aware models. For the SQLShare workload, the best
recall is obtained by all the seq-aware models except the seq-
aware cnn. When k = 1, the difference between the recall of
the seq-aware and seq-blind models is less than 0.06. How-
ever, the seq-aware models improve by over 0.1 at k = 2
and are able to keep improving at a steady rate from there.
For SDSS, all the seq-aware models outperforms others by
far when k = 1. The seq-blind rnn and transformer are able
to pick up from k = 2. The difference in recall becomes
smaller as k increases. All of the seq-blind and seq-aware
models consistently perform better than the baseline1.

11



6.3.3 Discussion
We found the following: (1) Although Table 2 shows that

for the SDSS workload, the baseline2 outperforms all the
seq-blind models at k = 1, the seq-blind models achieve
a recall of over 0.7 at k = 2. The seq-blind models make
template predictions based on syntactic similarity. This sug-
gests that the seq-blind models are able to recognize syntac-
tically similar queries in the workloads and recommend rel-
evant templates. (2) Similar to its performance in fragment
prediction, the CNN architecture performs better on the
SDSS workload than on SQLShare. Again, the additional
complexity in the SQLShare workload makes it difficult for
CNNs to identify local patterns at the word level. (3) For
both workloads, the difference between the recall of the seq-
aware transformer and the seq-aware fully-connected model
becomes smaller as k increases. This suggests that fine-
tuning is effective when users request a small set of template
recommendation, e.g., k < 4.

In summary, the seq-aware seq2seq models achieve the
best performance in both query fragment prediction and
query template prediction. Our results show the effective-
ness of the combined use of deep learning architectures and
query subsequences in query recommendation.

7. RELATED WORK
We review some of the related work on query composition,

representation learning, and recommendation systems.

7.1 Facilitating Query Composition
Query recommendation is one way to help users write

queries. There are many approaches. SnipSuggest [22] mod-
els each query as a vertex and uses query popularity to
build a directed acyclic graph (DAG); SQLSugg [14] gener-
ates undirected graphs as queryable templates; QueRIE [13]
uses collaborative filtering to make recommendations based
on summarized query sessions. These existing methods use
selected features, e.g., tables and attributes, to model query
statements, and ignore query sequences in sessions.

The work in [2] uses collaborative filtering to recommend
sets of queries as OLAP sessions based on previous sessions.
Its treatment of whole sessions instead of individual queries
means that the full sequence of queries is taken into account.
Sessions are extracted from workloads, ranked based on sim-
ilarity, and fitted to create a session that most resembles the
user’s future steps in the current session. [31] provides a
framework for recommending next steps in a data analysis
context, where sessions are modelled as trees. Similar past
sessions are compared using a tree edit distance metric. Ab-
stract generalized actions are recommended instead of con-
crete actions, this is similar in concept to the templates we
recommend. These two works are similar in terms of goals
but used in different contexts so it is difficult to compare.

Recent work has been using deep learning techniques for
improvements in facilitating query composition from aspects
other than query recommendation. In [46] character-level
and word-level CNNs and LSTMs are used to predict query
performance to guide users write more efficient queries, while [26]
shows query tree visualization to help users understand SQL
fragments to formulate queries. While these solutions apply
similar techniques to ours, they facilitate query composition
from different perspectives.

7.2 Sequence Representation Learning

Neural networks are effective tools for learning the un-
derlying explanatory factors and useful representation from
data for sequence modeling task such as machine translation
and natural language understanding [39, 15, 41, 17]. Using
neural network for representation learning has two main ad-
vantages. First, it reduces the cost of feature engineering
and enables automatic feature learning from raw data in
supervised or unsupervised approaches. Second, it allows
models to work with heterogeneous data as they do not rely
on hand-picked features. These advantages are important
in our query recommendation problem. Feature engineering
for queries is a challenging task and is not always applica-
ble to different query workloads. [18, 20] employ LSTM
autoencoder to express queries in a standardized form for
query composition tasks such as error prediction and query
similarity comparison. Our work differentiates as discussed
in Section 3.1. We use seq2seq models to capture query
sequences for effective query recommendation.

7.3 Deep Learning in Recommender Systems
Recommender systems estimate users’ preferences and in-

terests to recommend them favorable items. These systems
apply three types of strategies [36]. Content-based systems
use items’ properties and users’ information to match items
and users. In collaborative filtering, the recommendations
are made by learning from the past user-item interactions,
e.g. the history of visited or liked items. Hybrid systems
apply a combination of the two strategies.

Recently, plenty of research has been done on deep learn-
ing in recommender systems. [10] applies neural networks to
recommend videos on YouTube; [7] uses deep learning mod-
els to recommend application on GooglePlay; [33] presents
an RNN-based system to recommend Yahoo news (see [45]
for a related survey). Deep learning has driven a revolu-
tion in recommender systems and the systems that use deep
learning have shown significant improvements over tradi-
tional recommender systems. Our work is the first to use
deep learning in a recommender system for SQL queries.

8. CONCLUSION AND FUTURE WORK
We introduced a sequence-aware deep learning query rec-

ommendation approach that addresses two main weaknesses
of the existing query recommendation systems, namely ig-
noring the sequential data in query sessions and manual
feature selection to compare queries. We applied and com-
pared three main seq2seq models for fragment prediction
and tuned them for template prediction. We evaluated the
models on two real-word workloads, SDSS and SQLShare,
and show major improvements over the existing methods for
query recommendation and prediction.

Many steps can be taken to extend our work. We could
incorporate query result information to customize recom-
mendations. This semantic search in query workloads based
on query intentions [5]. Automatic feature selection in these
models make it easier to apply the models in heterogeneous
settings. A possible research direction is to apply and assess
the models in this paper with workloads of different query
languages. We also plan to consider a setting where the
models are trained on a workload over a database and trans-
ferred to make recommendation on a different database.
This requires transfer learning and tuning the models to
make effective recommendations.
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